Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer
نویسندگان
چکیده
There has been a significant interest on plasmonics in a metallic structure with very narrow gaps for studies of nanophotonics. However, little attention has been paid to the behavior of surface plasmons (SPs) in quasi-continuous metallic structures. This study observes and analyzes intermediate characteristics between propagating SPs (PSPs) and localized SPs (LSPs) in a quasi-continuous metallic monolayer of core-shell nanocubes. We reveal that, in a very narrow region of few-nanometer gaps among the nanocubes, the intrinsic energy bands of PSPs and LSPs intersect each other to generate two hybrid bands and an anti-crossing. Using a self-assembly method instead of the lithographic techniques which have several limitations as of now, we materialize the quasi-continuous metallic layer with plenty of nano-gaps that exhibit intermediate plasmonic characteristics. The intermediate plasmonic characteristics observed in this study will lead to interesting subjects, such as band engineering and slow SPs, in nanophotonics.
منابع مشابه
Tunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملPlasmonic Thermal Conductance of Stack of Metallic Nanorings
In this paper, we study the plasmonic thermal conductance of ordered stacks of metallic nanorings in a host material. Using second quantized formalism of the Random Phase Approximation, we first determine the dispersion relations of surface plasmon waves on the stacks of nanorings. Then, using Landauer-Buttiker formalism, we determine the coefficient of plasmonic thermal conductance and heat cu...
متن کاملAdjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons
Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...
متن کاملOptical response of threaded chain plasmons: from capacitive chains to continuous nanorods.
We present a detailed theoretical analysis of the optical response of threaded plasmonic nanoparticle strings, chains of metallic nanoparticles connected by cylindrical metallic bridges (threads), based on full-electrodynamic calculations. The extinction spectra of these complex metallic nanostructures are dominated by large resonances in the near infrared, which are associated with charge tran...
متن کاملSubstoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform.
Two-dimensional (2D) molybdenum oxides at their various stoichiometries are promising candidates for generating plasmon resonances in visible light range. Herein, we demonstrate plasmonic 2D molybdenum oxide flakes for gas sensing applications, in which hydrogen (H2) is selected as a model gas. The 2D molybdenum oxide flakes are obtained using a grinding-assisted liquid exfoliation method and e...
متن کامل